Surface Characterization and Bulk Property Analysis of Aluminum Powders Treated with Hydrophobic Coatings: Stearic Acid and Phenyl-Phosphonic Acid

Author:

Ludwig Bellamarie1ORCID

Affiliation:

1. The Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804, USA

Abstract

Stearic and phenyl-phosphonic acids were applied to fine aluminum particles to understand their effect on the surface chemical composition and bulk properties of the surface-treated powders. During the solution phase deposition process, the surface composition changes chemically through a condensation reaction between the acid and particle surface hydroxyl groups, forming covalent chemical bonds. The retention of both types of acids was verified through characterization using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The presence of stearic acid on the particle surface was observed through signature absorbance peaks, including interfacial C-O bonding modes, carboxylate, and carbonyl moieties, all present on both the treated powder. Spectra using XPS showed an increase in -CH relative intensity signal on the particle surface when compared to the raw material when considering the the carbon 2p photoelectron peak. Similar findings confirmed the presence of the phenyl-phosphonic acid when comparing to the raw material. The IR spectrum confirmed the presence of P-O-Al, P-O, and phosponates as a result of the surface bonding between the reagent and particles. XPS always provided evidence through the presence of phosphorous 2p and 2s photoelecton peaks at 191.3 and 133.4 eV, respectively. The bulk properties of both surface treated powders improved, as shown through improved apparent/tap density and a decreased Hausner Ratio (Group C to Group A behavior). Rheological characterization provided additional evidence by showing a reduced specific energy, flow rate index, and cohesion. The particle packing was improved as evidenced through reduced compressibility as a function of applied normal stress.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3