New Methods for the Acoustic-Signal Segmentation of the Temporomandibular Joint

Author:

Kajor Marcin,Kucharski DariuszORCID,Grochala JustynaORCID,Loster Jolanta E.ORCID

Abstract

(1) Background: The stethoscope is one of the main accessory tools in the diagnosis of temporomandibular joint disorders (TMD). However, the clinical auscultation of the masticatory system still lacks computer-aided support, which would decrease the time needed for each diagnosis. This can be achieved with digital signal processing and classification algorithms. The segmentation of acoustic signals is usually the first step in many sound processing methodologies. We postulate that it is possible to implement the automatic segmentation of the acoustic signals of the temporomandibular joint (TMJ), which can contribute to the development of advanced TMD classification algorithms. (2) Methods: In this paper, we compare two different methods for the segmentation of TMJ sounds which are used in diagnosis of the masticatory system. The first method is based solely on digital signal processing (DSP) and includes filtering and envelope calculation. The second method takes advantage of a deep learning approach established on a U-Net neural network, combined with long short-term memory (LSTM) architecture. (3) Results: Both developed methods were validated against our own TMJ sound database created from the signals recorded with an electronic stethoscope during a clinical diagnostic trail of TMJ. The Dice score of the DSP method was 0.86 and the sensitivity was 0.91; for the deep learning approach, Dice score was 0.85 and there was a sensitivity of 0.98. (4) Conclusions: The presented results indicate that with the use of signal processing and deep learning, it is possible to automatically segment the TMJ sounds into sections of diagnostic value. Such methods can provide representative data for the development of TMD classification algorithms.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3