Bilateral Ear Acoustic Authentication: A Biometric Authentication System Using Both Ears and a Special Earphone

Author:

Yasuhara MasakiORCID,Nambu IsaoORCID,Yano Shohei

Abstract

In existing biometric authentication methods, the user must perform an authentication operation such as placing a finger in a scanner or facing a camera. With ear acoustic authentication, the acoustic characteristics of the ear canal can be used as biometric information. Therefore, a person wearing earphones does not need to perform any authentication operation. Existing studies which use the acoustic characteristics of the ear canal as biometric information only measure the characteristics of one ear. However, the acoustic characteristics of the human ear canal can be measured from both ears. Hence, we proposed a new method for acoustic authentication based on the ability to measure the acoustic characteristics of the ear canal from both ears. The acoustic characteristics of the ear canal of 52 subjects were measured. Comparing the acoustic characteristics of the left and right ear canals, a difference in the signal between the left and right ear was observed. To evaluate the authentication accuracy, we calculated the evaluation indices of biometric authentication, equal error rate (EER), and area under curve (AUC). The EER for bilateral ear acoustic authentication using signals from both ears was 0.39%, which was lower than that of a single ear. The AUC was 0.0016 higher for bilateral ear acoustic authentication. Therefore, the use of bilateral signals for ear acoustic authentication was proved to be effective in improving authentication accuracy.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biometrics;Computer and Information Security Handbook;2025

2. Domain-adaptation method between acoustic-response data using different insert earphones;The Journal of the Acoustical Society of America;2024-04-01

3. Multibiometric classification for people based on artificial bee colony method and decision tree;PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3