Rhythmic-Synchronization-Based Interaction: Effect of Interfering Auditory Stimuli, Age and Gender on Users’ Performances

Author:

Bellino AlessioORCID

Abstract

Rhythmic-synchronization-based interaction is an emerging interaction technique where multiple controls with different rhythms are displayed in visual form, and the user can select one of them by matching the corresponding rhythm. These techniques can be used to control smart objects in environments where there may be interfering auditory stimuli that contrast with the visual rhythm (e.g., to control Smart TVs while playing music), and this could compromise users’ ability to synchronize. Moreover, these techniques require certain reflex skills to properly synchronize with the displayed rhythm, and these skills may vary depending on the age and gender of the users. To determine the impact of interfering auditory stimuli, age, and gender on users’ ability to synchronize, we conducted a user study with 103 participants. Our results show that there are no significant differences between the conditions of interfering and noninterfering auditory stimuli and that synchronization ability decreases with age, with males performing better than females—at least as far as younger users are concerned. As a result, two implications emerge: first, users are capable of focusing only on visual rhythm ignoring the auditory interfering rhythm, so listening to an interfering rhythm should not be a major concern for synchronization; second, as age and gender have an impact, these systems may be designed to allow for customization of rhythm speed so that different users can choose the speed that best suits their reflex skills.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spacetime trajectories as overlapping rhythms;International Journal of Human-Computer Studies;2024-12

2. Multisensory Trajectory Control at One Interaction Point, with Rhythm;Audio Mostly 2024 - Explorations in Sonic Cultures;2024-09-18

3. SoundOrbit: motion-correlation interaction with auditory orbital trajectories;Personal and Ubiquitous Computing;2024-06-15

4. Controlling Trajectories with OneButton and Rhythm;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

5. Spacetime Trajectories as Overlapping Rhythms;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3