Modification of Hand Muscular Synergies in Stroke Patients after Robot-Aided Rehabilitation

Author:

Scotto di Luzio FrancescoORCID,Cordella FrancescaORCID,Bravi MarcoORCID,Santacaterina FabioORCID,Bressi Federica,Sterzi SilviaORCID,Zollo LoredanaORCID

Abstract

The central nervous system (CNS) is able to control a very high number of degrees of freedom to perform complex movements of both upper and lower limbs. However, what strategies the CNS adopts to perform complex tasks are not completely clear and are still being studied. Recent studies confirm that stroke subjects with mild and moderate impairment show altered upper limb muscle patterns, but the muscular patterns of the hand have not completely investigated, although the hand represents a paramount tool for performing activities of daily living (ADLs) and stroke can significantly alter the mobilization of this part of the body. In this context, this study aims at investigating hand muscular synergies in chronic stroke patients and evaluating some possible benefits in the robot-aided rehabilitation treatment of the hand in these subjects. Seven chronic stroke patients with mild-to-moderate impairment (FM>30) were involved in this study. They received a 5-week robot-aided rehabilitation treatment with the Gloreha hand exoskeleton, and muscle synergies of both the healthy and injured hand were evaluated at the beginning and at the end of the treatment. The performed analysis showed a very high degree of similarity of the involved synergies between the healthy and the injured limb both before and after the rehabilitation treatment (mean similarity index values: H-BR: 0.88±0.03, H-AR: 0.94±0.03, BR-AR: 0.89±0.05). The increasing similarity is regarded as an effect of the robot-aided rehabilitation treatment and future activities will be performed to increase the population involved in the study.

Funder

Regione Lazio

European Union

Istituto Nazionale per l'Assicurazione Contro gli Infortuni sul Lavoro

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3