A Robust Localization System Fusion Vision-CNN Relocalization and Progressive Scan Matching for Indoor Mobile Robots

Author:

Liu Yanjie,Zhao Changsen,Wei Yanlong

Abstract

Map-based, high-precision dynamic pose tracking and rapid relocalization in the case of unknown poses are very important for indoor navigation robots. This paper aims to propose a robust and high-precision indoor robot positioning algorithm that combines vision and laser sensor information. This algorithm mainly includes two parts: initialization and real-time pose tracking. The initialization component is mainly to solve the problem of the uncertainty of a robot’s initial pose and loss of pose tracking. First, the laser information is added to the posenetLSTM neural network that only considers image information as a geometric constraint, and the loss function is redesigned thereby improving global positioning accuracy. Second, on the basis of visual rough positioning, the branch and bound method is used to quickly search the high-precision pose of the robot. In the real-time tracking component, small-scale correlation sampling is performed on the high-resolution environment grid map, and the robot’s pose is dynamically tracked in real time. When the score of the tracking pose is lower than a certain threshold, the method of nonlinear graph optimization is used to perform the pose optimization. In order to prove the robustness, high precision, and real-time performance of the algorithm, this article first builds a simulation environment in Gazebo for evaluation, and then verifies the relevant performance of the algorithm through the Mir robot platform. Both simulations and experiments show that the introduction of laser information into the neural network can greatly improve the accuracy of vision relocalization and the system can quickly perform high-precision repositioning when the camera is not severely blocked. At the same time, compared with the pose tracking performance of the adaptive Monte Carlo localization (AMCL) algorithm, the proposed algorithm has also improved in accuracy and in real-time performance.

Funder

State Key Laboratory of Robotics and System

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3