Abstract
Although various studies on monitoring dog behavior have been conducted, methods that can minimize or compensate data noise are required. This paper proposes multimodal data-based dog behavior recognition that fuses video and sensor data using a camera and a wearable device. The video data represent the moving area of dogs to detect the dogs. The sensor data represent the movement of the dogs and extract features that affect dog behavior recognition. Seven types of behavior recognition were conducted, and the results of the two data types were used to recognize the dog’s behavior through a fusion model based on deep learning. Experimentation determined that, among FasterRCNN, YOLOv3, and YOLOv4, the object detection rate and behavior recognition accuracy were the highest when YOLOv4 was used. In addition, the sensor data showed the best performance when all statistical features were selected. Finally, it was confirmed that the performance of multimodal data-based fusion models was improved over that of single data-based models and that the CNN-LSTM-based model had the best performance. The method presented in this study can be applied for dog treatment or health monitoring, and it is expected to provide a simple way to estimate the amount of activity.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献