Effect of Dynamic Loading Conditions on Maximizing Energy Dissipation of Metallic Dampers

Author:

Park Ji Woon,Yoon Ji-Hoon,Yoon Gil-Ho,Lim Yun Mook

Abstract

Diversification of the optimum designs is practical for metallic dampers due to their advantages of low cost, stability, and ease of fabrication. Therefore, this paper presents a novel approach—dynamic optimization—to derive various optimum shapes of metallic dampers that will dissipate the greatest amount of seismic energy. Specifically, this study proposes a conceptual metallic damper for bridges as a target model to investigate and develop the optimization method. First, an optimizing system was constructed by combining an optimization algorithm (sequential quadratic programming, SQP) with finite element analysis. In a conventional optimization process, energy dissipation capability and stiffness of the metallic damper increases under given static loadings. However, the conventional process fails to diversify the optimized shapes and results in less energy dissipated in conditions with relatively small ground motions due to the increased stiffness. Therefore, a novel method with a simple numerical model for dynamic optimization was devised with additional spring sets and concentrated masses. By utilizing this model, the optimized results under relatively high acceleration conditions were similar to the statically optimized cases, while the other cases showed different trends of optimum shapes. These unconventional results demonstrate decreased stiffness in static analysis, but eventually exhibit higher energy dissipation during small earthquakes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3