Development of Vibration Control Structure on Suspended Ceiling Using Pulley Mechanism

Author:

Majima RyoORCID,Sakai Shigeki,Saito TaikiORCID

Abstract

A suspended ceiling system (SCS) is one of the most fragile and non-structural elements during earthquakes. However, effective seismic protection technologies for enhancing the suspended ceiling system have not been developed other than the steel bracing system. An innovative passive vibration control system is proposed in this paper, which equipped a damper-employed pulley amplification mechanism into the indirect suspended ceiling system, named the pulley–damper ceiling system (PDCS). Theoretical formulation and the detailed information on the system were presented first. In addition, a new rotational damper composition consisting of a non-linear viscous damper was developed to follow the large wire-cable stroke. Six types of the full-scale ceiling specimens of a 15.6-square meter area with different configurations were constructed for the preliminary experiments to evaluate the seismic performance and feasibility of PDCS under simulated earthquake motions. The comparative results of the shake table test demonstrated that the application of PDCS is capable of controlling both displacement and acceleration of the ceiling panels. This study also presents the nonlinear time history analyses by modeling a wire-cable as an equivalent truss element to transmit the relative displacement of the ceiling system to the damper. The analytical model accurately simulated the dynamic behavior of PDCS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3