Real-Time Measurement of Photodissociation with a Static Modulated Fourier Transform Spectrometer

Author:

Cho Ju YongORCID,Kim Hyoungjin,Lee Seunghoon,Jang Won KweonORCID

Abstract

A static modulated Fourier transform spectrometer composed of a modified Sagnac interferometer was implemented for real-time remote sensing of the spectral property changes in a solid dye. In the spectrum obtained from the implemented spectrometer, the relationship between spectral resolution and dependent factors was discussed to prevent aliasing. As a target material, a solid-state dye of rhodamine-6G was fabricated in the laboratory. When an intense pumping laser light was irradiated to a solid dye, with increasing irradiating time, photodissociation occurred due to the accumulated heat and the fluorescence intensity decreased rapidly. The fast change in the fluorescence spectrum of the solid dye due to photodissociation could be measured and analyzed in real time using a static modulated Fourier transform spectrometer implemented in the laboratory. As the pumping light source, a diode laser of 1 W output power at 530 nm, in which pulse width modulation was possible, was used. When the solid-state dye sample was irradiated with a 10 Hz pulse repetition rate and 2.5 ms pulse duration for 900 s, the fluorescence intensity decreased by 44%, the fluorescence peak wavelength shifted from 590 to 586 nm, and the maximum temperature of the irradiated portion rose up to 45 °C. Under the same conditions, when the pulse duration was increased by 4 times to 10 ms, the fluorescence intensity decreased by 65%, the fluorescence peak wavelength shifted from 590 to 580 nm, and the maximum temperature of the irradiated portion rose up to 76 °C. The spectrometer proposed in this study was effective in measuring and analyzing the spectral properties of rapidly changing materials in real time.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3