Author:
Eisler Wiebke,Baur Jan-Ole,Held Manuel,Rahmanian-Schwarz Afshin,Daigeler Adrien,Denzinger Markus
Abstract
In the medical care of partial and full-thickness wounds, autologous skin grafting is still the gold standard of dermal replacement. In contrast to spontaneous reepithelializing of superficial wounds, deep dermal wounds often lead to disturbing scarring, with cosmetically or functionally unsatisfactory results. However, modern wound dressings offer promising approaches to surface reconstruction. Against the background of our future aim to develop an innovative skin substitute, we investigated the behavior of two established dermal substitutes, a crosslinked and a non-crosslinked collagen biomatrix. The products were applied topically on a total of 18 full-thickness skin defects paravertebrally on the back of female Göttingen Minipigs—six control wounds remained untreated. The evaluation was carried out planimetrically (wound closure time) and histologically (neoepidermal cell number and epidermis thickness). Both treatment groups demonstrated significantly faster reepithelialization than the controls. The histologic examination verified the highest epidermal thickness in the crosslinked biomatrix-treated wounds, whereas the non-crosslinked biomatrix-treated wounds showed a higher cell density. Our data presented a positive influence on epidermal regeneration with the chosen dermis substitutes even without additional skin transplantation and, thus, without additional donor site morbidity. Therefore, it can be stated that the single biomatrix application might be used in a clinical routine with small wounds, which needs to be investigated further in a clinical setting to determine the size and depths of a suitable wound bed. Nevertheless, currently available products cannot solely achieve wound healing that is equal to or superior to autologous tissue. Thus, the overarching aim still is the development of an innovative skin substitute to manage surface reconstruction without additional skin grafting.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献