Discrete HMM for Visualizing Domiciliary Human Activity Perception and Comprehension

Author:

Kuan Ta-WenORCID,Tseng Shih-PangORCID,Chen Che-WenORCID,Wang Jhing-Fa,Sun Chieh-An

Abstract

Advances in artificial intelligence-based autonomous applications have led to the advent of domestic robots for smart elderly care; the preliminary critical step for such robots involves increasing the comprehension of robotic visualizing of human activity recognition. In this paper, discrete hidden Markov models (D-HMMs) are used to investigate human activity recognition. Eleven daily home activities are recorded using a video camera with an RGB-D sensor to collect a dataset composed of 25 skeleton joints in a frame, wherein only 10 skeleton joints are utilized to efficiently perform human activity recognition. Features of the chosen ten skeleton joints are sequentially extracted in terms of pose sequences for a specific human activity, and then, processed through coordination transformation and vectorization into a codebook prior to the D-HMM for estimating the maximal posterior probability to predict the target. In the experiments, the confusion matrix is evaluated based on eleven human activities; furthermore, the extension criterion of the confusion matrix is also examined to verify the robustness of the proposed work. The novelty indicated D-HMM theory is not only promising in terms of speech signal processing but also is applicable to visual signal processing and applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Sensorbased and vision-based human activity recognition: A comprehensive survey;Dang;Pattern Recognit.,2020

2. A Review on Human Activity Recognition Using Vision-Based Method

3. Vision based human activity recognition: A review;Bux,2007

4. Sensor-Based Activity Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3