Abstract
Advances in artificial intelligence-based autonomous applications have led to the advent of domestic robots for smart elderly care; the preliminary critical step for such robots involves increasing the comprehension of robotic visualizing of human activity recognition. In this paper, discrete hidden Markov models (D-HMMs) are used to investigate human activity recognition. Eleven daily home activities are recorded using a video camera with an RGB-D sensor to collect a dataset composed of 25 skeleton joints in a frame, wherein only 10 skeleton joints are utilized to efficiently perform human activity recognition. Features of the chosen ten skeleton joints are sequentially extracted in terms of pose sequences for a specific human activity, and then, processed through coordination transformation and vectorization into a codebook prior to the D-HMM for estimating the maximal posterior probability to predict the target. In the experiments, the confusion matrix is evaluated based on eleven human activities; furthermore, the extension criterion of the confusion matrix is also examined to verify the robustness of the proposed work. The novelty indicated D-HMM theory is not only promising in terms of speech signal processing but also is applicable to visual signal processing and applications.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference32 articles.
1. Sensorbased and vision-based human activity recognition: A comprehensive survey;Dang;Pattern Recognit.,2020
2. A Review on Human Activity Recognition Using Vision-Based Method
3. Vision based human activity recognition: A review;Bux,2007
4. Sensor-Based Activity Recognition
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献