Abstract
Citation creates a link between citing and the cited author, and the frequency of citation has been regarded as the basic element to measure the impact of research and knowledge-based achievements. Citation frequency has been widely used to calculate the impact factor, H index, i10 index, etc., of authors and journals. However, for a fair evaluation, the qualitative aspect should be considered along with the quantitative measures. The sentiments expressed in citation play an important role in evaluating the quality of the research because the citation may be used to indicate appreciation, criticism, or a basis for carrying on research. In-text citation analysis is a challenging task, despite the use of machine learning models and automatic sentiment annotation. Additionally, the use of deep learning models and word embedding is not studied very well. This study performs several experiments with machine learning and deep learning models using fastText, fastText subword, global vectors, and their blending for word representation to perform in-text sentiment analysis. A dimensionality reduction technique called principal component analysis (PCA) is utilized to reduce the feature vectors before passing them to the classifier. Additionally, a customized convolutional neural network (CNN) is presented to obtain higher classification accuracy. Results suggest that the deep learning CNN coupled with fastText word embedding produces the best results in terms of accuracy, precision, recall, and F1 measure.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献