Performance of a Mid-Size Net-Zero Energy Solar House

Author:

Taherian HessamORCID,Peters Robert W.ORCID

Abstract

The University of Alabama at Birmingham (UAB) was one of 16 collegiate teams from around the world that participated in the U.S. Department of Energy Solar Decathlon 2017 competition. An interdisciplinary team of students from across the university was engaged in a 2-year long process to design and build a house that is powered completely by solar power. The house was equipped to run all the typical appliances of an average modern house at similar levels on a conventional power grid. The net-zero house was built and tested on the UAB campus. Considering Birmingham’s weather, a safe room was built to ensure the safety of occupants during events of extreme weather, such as a tornado. A ductless HVAC unit consisting of an inverter-type 3-speed outdoor unit supplied refrigerant to four high-wall indoor units providing the primary source of space conditioning. To achieve a model of efficiency and cost effectiveness, the house incorporated a heavily insulated envelope and precise glazing protection. The roof, floor framing and walls had R-30 batt and foam insulation. With a design informed by southern vernacular language, the building is oriented to maximize solar access and to use roof planes for shading the majority of the year. Peak power generation of the panels was recorded at 9.6 kW. The home has a centralized energy management system that can provide access to energy consumption data and allow control of lighting, appliances, and plug loads remotely. Energy modeling showed that the annual electricity consumption for heating and cooling with variation in wall types were 8470 to 11,661 kWh. For the month of October, it was calculated varying from 683 to 763 kWh, with varying air changes per hour from 0 to 1.5.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

1. Buildings and Climate Change: Summary for Decision-Makers,2009

2. Achieving better energy-efficient air conditioning – A review of technologies and strategies

3. Smart Enegy Management for Households. A+BE: Architecture and the Built Environment;Van Dam,2013

4. Relative benefits of technology and occupant behaviour in moving towards a more energy efficient, sustainable housing paradigm

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3