An Exploratory Study on Vectorcardiographic Identification of the Site of Origin of Focally Induced Premature Depolarizations in Horses, Part II: The Ventricles

Author:

Van Steenkiste GlennORCID,Delhaas TammoORCID,Hermans BenORCID,Vera Lisse,Decloedt AnneliesORCID,van Loon GuntherORCID

Abstract

In human cardiology, the anatomical origin of ventricular premature depolarizations (VPDs) is determined by the characteristics of a 12-lead electrocardiogram (ECG). Former studies in horses had contradictory results regarding the diagnostic value of the 12-lead ECG and vectorcardiography (VCG), which results were attributed to the different cardiac conduction system in this species. The objective of this study was to determine if the anatomical origin of pacing-induced VPDs could be differentiated in horses based upon VCG characteristics. A 12-lead ECG was recorded in seven horses under general anesthesia while right and left ventricular endomyocardial pacing was performed (800–1000 ms cycle length) at the apex, mid and high septum and mid and high free wall, and at the right ventricular outflow tract. Catheter positioning was guided by 3D electro-anatomical mapping and echocardiography. A median complex, obtained from four consecutive complexes, was calculated for each pacing location and sinus rhythm. The VCG was calculated from the 12-lead ECG-derived median complexes using custom-made algorithms and was used to determine the initial and maximum electrical axes of the QRS complex. An ANOVA for spherical data was used to test if VCGs between each paced location and between pacing and sinus rhythm were significantly (p < 0.05) different. The model included the radius, azimuth and elevation of each electrical axis. Pacing induced significantly different initial and maximum electrical axes between different locations and between pacing and sinus rhythm. The current results suggest that VCG is a useful technique to identify the anatomical origin of ventricular ectopy in horses.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3