Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens

Author:

Derakhshani Sayed M.ORCID,Overduin Matthias,van Niekerk Thea G. C. M.,Groot Koerkamp Peter W. G.

Abstract

Welfare-oriented regulations cause farmers worldwide to shift towards more welfare-friendly, e.g., loose housing systems such as aviaries with litter. In contrast to the traditional cage housing systems, good technical results can only be obtained if the behavior of hens is considered. With increasing flock sizes, the automation of behavioural assessment can be beneficial. This research aims to show a proof of principle of tools for analyzing laying-hen behaviors by using wearable inertia sensor technology and a machine learning model (ML). For this aim, the behaviors of hens were classified into three classes: static, semi-dynamic, and highly dynamic behavior. The activities of hens were continuously recorded on video and synchronized with the sensor signals. Two hens were equipped with sensors, one marked green and one blue, for five days to collect the data. The training data set indicated that the ML model can accurately classify the highly dynamic behaviors with a one-second time window; a four-second time window is accurate for static and semi-dynamic behaviors. The Bagged Trees model, with an overall accuracy of 89% was the best ML model with the F1-scores of 89%, 91%, and 87% for static, semi-dynamic, and highly dynamic behaviors. The Bagged Trees model also performed well in classifying the behaviors of the hen in the validation data set with an overall F1-score of 0.92 (uniform either % or decimals). This research illustrates that the combination of wearable inertia sensors and machine learning is a viable technique for analyzing the laying-hen behaviors and supporting farmers in the management of hens in loose housing systems.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference36 articles.

1. Council Directive 99/74/EC of 19 July 1999 laying down minimum standards for the protection of laying hens;Off. J. Eur. Communities,1999

2. Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the welfare aspects of various systems of keeping laying hens

3. Poultry welfare in intensive and extensive production systems

4. Air Quality and Emissions from Livestock and Poultry Production/Waste Management Systems;Casey,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3