Genetic Diversity of Two Globally Invasive Snails in Asia and Americas in Relation with Agricultural Habitats and Climate Factors

Author:

Zhao Benliang,Luo Mingzhu,Zhang Jiaen,Liu Yiliang,Deng ZhixinORCID,Gong Xin

Abstract

The successful establishment of invasive populations is closely linked to environmental factors. It is unclear whether coexisting species in the native area follow the same genetic pattern in the invaded continents under the local climate factors. Two coexisting morphologically similar snails (Pomacea canaliculata and P. maculata), native to tropical and sub-tropical South America, have become invasive species for agriculture production and wetland conservation across five continents over 40 years. We analyzed the correlation between the genetic diversity of the two snails and the climate factors or habitat changes. Based on the 962 sequences from the invaded continents and South America, the nucleotide diversity in the agricultural habitat was low for P. canaliculata, whereas it was high for P. maculata, compared with that in the non-agricultural habitat. The two snails showed a divided population structure among the five continents. The P. canaliculata population in the invaded continents has remained stable, whereas the P. maculata population expanded suddenly. Seven main haplotype networks and two ancestral haplotypes (Pc3, Pm1) were found in the P. canaliculata and P. maculata populations. The haplotypes of the two snails were related to local climate factors. The overall fixation index of P. canaliculata and P. maculata was 0.2657 and 0.3097 between the invaded continents and South America. The population expansion of the two snails fitted the isolation-by-distance model. We discovered nine new sequences from the sampling locations. Overall, the genetic diversity and genetic differentiation of the two invasive snails were closely related to geographic separation, agricultural habitat, and climate factors.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Undergraduate Innovation Programs

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3