Dissecting Plant Specific Insert Interaction Networks

Author:

Sampaio MiguelORCID,Neves João,Pereira SusanaORCID,Pissarra JoséORCID,Pereira CláudiaORCID

Abstract

In plants, there are several thousands of different types of proteins with different functions that must be correctly located to a specific subcellular compartment. The conventional vacuolar sorting route is already well described and research teams are now more interested in understanding mechanisms behind how unconventional sorting routes work. Our laboratory has been studying the plant-specific insert (PSI), a domain shown to be both sufficient and necessary for correct vacuolar sorting, for a long time. Even though different PSI domains (PSI A and PSI B) present high similarity, they mediate different routes: PSI A has Golgi bypass ability, directly delivering proteins from the endoplasmic reticulum to the vacuole; while PSI B mediates a conventional ER–Golgi–vacuole pathway. The main goal of this study was to identify intermediate players in PSI sorting processes. We purified both PSIs and several endomembrane reporters involved in specific events of protein transport and tested their interactions through pulldown assays. Furthermore, purified PSIs were also used as bait for co-immunoprecipitation in tobacco and Arabidopsis extracts. The data obtained will set the basis for a broader objective aimed at mapping the PSI network of interactions, which will help the characterization of unconventional trafficking.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3