Identification and Characterization of Rothia amarae sp. nov. in a Suspension Culture of Arabidopsis thaliana (Heynh.) Cells

Author:

Sokolov Alexander,Dykman LevORCID,Galitskaya Anna,Sokolov Oleg

Abstract

We report, for the first time, that a nonpathogenic bacterial microflora has been found in a suspension culture of Arabidopsis thaliana cells. The 16S rRNA gene sequencing showed that the isolate belonged to Rothia amarae. Identification was confirmed by microbiological, microscopic, and immunochemical methods. The growth of the isolate on blood agar preserves the morphological and immunochemical properties of the isolate from the plant cell suspension culture. Whether the isolated strain is a contaminant or a true symbiont remains an open question. It is known that Rothia bacteria live mostly in oceanic and waste water and in benthos. Members of Rothia are part of the normal microflora of the oral cavity, respiratory tract, and stomach of humans. Endophytic Rothia are inhibitory against several pathogenic fungi and bacteria. In addition, some actinobacteria, including members of Rothia, are nitrogen fixers. It cannot be ruled out that the R. amarae strain isolated in this work can be endosymbiotic with a suspension culture of A. thaliana. The bacterial “inclusions” found by us in a suspension culture of A. thaliana merit further investigation to identify them more deeply and clarify their symbiotic properties.

Publisher

MDPI AG

Reference18 articles.

1. Plant cell culture technology in the cosmetics and food industries: current state and future trends

2. Characterization and identification of bacteria isolated from micropropagated mint plants

3. Endogenous bacterial contamination during in vitro culture of table banana: Identification and prevention;Habiba;Plant. Tissue Cult. Biotechnol.,2002

4. Ultrastructure of ginseng cells and the cyanobacteria Chlorogloeopsis fritschii in the association cultivated in the dark;Baulina;Moscow. Univ. Biol. Sci. Bull.,1995

5. Growing Arabidopsis In Vitro: Cell Suspensions, In Vitro Culture, and Regeneration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3