Abstract
Background: Bioactive chemical surface modifications improve the wettability and osseointegration properties of titanium implants in both animals and humans. The objective of this animal study was to investigate and compare the bioreactivity characteristics of titanium implants (BLT) pre-treated with a novel bone bioactive liquid (BBL) and the commercially available BLT-SLA active. Methods: Forty BLT-SLA titanium implants were placed in in four foxhound dogs. Animals were divided into two groups (n = 20): test (BLT-SLA pre-treated with BBL) and control (BLT-SLA active) implants. The implants were inserted in the post extraction sockets. After 8 and 12 weeks, the animals were sacrificed, and mandibles were extracted, containing the implants and the surrounding soft and hard tissues. Bone-to-implant contact (BIC), inter-thread bone area percentage (ITBA), soft tissue, and crestal bone loss were evaluated by histology and histomorphometry. Results: All animals were healthy with no implant loss or inflammation symptoms. All implants were clinically and histologically osseo-integrated. Relative to control groups, test implants demonstrated a significant 1.5- and 1.7-fold increase in BIC and ITBA values, respectively, at both assessment intervals. Crestal bone loss was also significantly reduced in the test group, as compared with controls, at week 8 in both the buccal crests (0.47 ± 0.32 vs 0.98 ± 0.51 mm, p < 0.05) and lingual crests (0.39* ± 0.3 vs. 0.89 ± 0.41 mm, p < 0.05). At week 12, a pronounced crestal bone loss improvement was observed in the test group (buccal, 0.41 ± 0.29 mm and lingual, 0.54 ± 0.23 mm). Tissue thickness showed comparable values at both the buccal and lingual regions and was significantly improved in the studied groups (0.82–0.92 mm vs. 33–48 mm in the control group). Conclusions: Relative to the commercially available BLT-SLA active implants, BLT-SLA pre-treated with BBL showed improved histological and histomorphometric characteristics indicating a reduced titanium surface roughness and improved wettability, promoting healing and soft and hard tissue regeneration at the implant site.
Funder
Biointelligent Technology Systems SL, Barcelona, Spain
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献