Glycolysis under Circadian Control

Author:

Zlacká Jana,Zeman MichalORCID

Abstract

Glycolysis is considered a main metabolic pathway in highly proliferative cells, including endothelial, epithelial, immune, and cancer cells. Although oxidative phosphorylation (OXPHOS) is more efficient in ATP production per mole of glucose, proliferative cells rely predominantly on aerobic glycolysis, which generates ATP faster compared to OXPHOS and provides anabolic substrates to support cell proliferation and migration. Cellular metabolism, including glucose metabolism, is under strong circadian control. Circadian clocks control a wide array of metabolic processes, including glycolysis, which exhibits a distinct circadian pattern. In this review, we discuss circadian regulations during metabolic reprogramming and key steps of glycolysis in activated, highly proliferative cells. We suggest that the inhibition of metabolic reprogramming in the circadian manner can provide some advantages in the inhibition of oxidative glycolysis and a chronopharmacological approach is a promising way to treat diseases associated with up-regulated glycolysis.

Funder

Slovak Research and Development Agency

Operation Program of Integrated Infrastructure for the project, Advancing University Capacity and Competence in Research, Development and Innovation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3