Highly Efficient Multi-Step Oxidation Bioanode Using Microfluidic Channels

Author:

Komatsu Tomohiro,Hishii Kazuki,Kimura Michiko,Amaya SatoshiORCID,Sakamoto Hiroaki,Takamura Eiichiro,Satomura TakenoriORCID,Suye Shin-ichiro

Abstract

With the rapid decline of fossil fuels, various types of biofuel cells (BFCs) are being developed as an alternative energy source. BFCs based on multi-enzyme cascade reactions are utilized to extract more electrons from substrates. Thus, more power density is obtained from a single molucule of substrate. In the present study, a bioanode that could extract six electrons from a single molecule of L-proline via a three-enzyme cascade reaction was developed and investigated for its possible use in BFCs. These enzymes were immobilized on the electrode to ensure highly efficient electron transfer. Then, oriented immobilization of enzymes was achieved using two types of self-assembled monolayers (SAMs). In addition, a microfluidic system was incorporated to achieve efficient electron transfer. The microfluidic system, in which the electrodes were arranged in a tooth-shaped comb, allowed for substrates to be supplied continuously to the cascade, which resulted in smooth electron transfer. Finally, we developed a high-performance bioanode which resulted in the accumulation of higher current density compared to that of a gold disc electrode (205.8 μA cm−2: approximately 187 times higher). This presents an opportunity for using the bioanode to develop high-performance BFCs in the future.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3