Lactate Suppresses Retroviral Transduction in Cervical Epithelial Cells through DNA-PKcs Modulation

Author:

Wagner WaldemarORCID,Sobierajska KatarzynaORCID,Kania Katarzyna DominikaORCID,Paradowska EdytaORCID,Ciszewski Wojciech MichałORCID

Abstract

Recently, we have shown the molecular basis for lactate sensing by cervical epithelial cells resulting in enhanced DNA repair processes through DNA-PKcs regulation. Interestingly, DNA-PKcs is indispensable for proper retroviral DNA integration in the cell host genome. According to recent findings, the mucosal epithelium can be efficiently transduced by retroviruses and play a pivotal role in regulating viral release by cervical epithelial cells. This study examined the effects of lactate on lentiviral transduction in cervical cancer cells (HeLa, CaSki, and C33A) and model glioma cell lines (DNA-PKcs proficient and deficient). Our study showed that L- and D-lactate enhanced DNA-PKcs presence in nuclear compartments by between 38 and 63%, which corresponded with decreased lentiviral transduction rates by between 15 and 36%. Changes in DNA-PKcs expression or its inhibition with NU7441 also greatly affected lentiviral transduction efficacy. The stimulation of cells with either HCA1 agonist 3,5-DHBA or HDAC inhibitor sodium butyrate mimicked, in part, the effects of L-lactate. The inhibition of lactate flux by BAY-8002 enhanced DNA-PKcs nuclear localization which translated into diminished lentiviral transduction efficacy. Our study suggests that L- and D-lactate present in the uterine cervix may play a role in the mitigation of viral integration in cervical epithelium and, thus, restrict the viral oncogenic and/or cytopathic potential.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3