Sound Identification Method for Gas and Coal Dust Explosions Based on MLP

Author:

Yu Xingchen1,Li Xiaowei1

Affiliation:

1. School of Artificial Intelligence, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

To solve the problems of backward gas and coal dust explosion alarm technology and single monitoring means in coal mines, and to improve the accuracy of gas and coal dust explosion identification in coal mines, a sound identification method for gas and coal dust explosions based on MLP in coal mines is proposed, and the distributions of the mean value of the short-time energy, zero crossing rate, spectral centroid, spectral spread, roll-off, 16-dimensional time-frequency features, MFCC, GFCC, short-time Fourier coefficients of gas explosion sound, coal dust sound, and other underground sounds were analyzed. In order to select the most suitable feature vector to characterize the sound signal, the best feature extraction model of the Relief algorithm was established, and the cross-entropy distribution of the MLP model trained with the different numbers of feature values was analyzed. In order to further optimize the feature value selection, the recognition results of the recognition models trained with the different numbers of sound feature values were compared, and the first 35-dimensional feature values were finally determined as the feature vector to characterize the sound signal. The feature vectors are input into the MLP to establish the sound recognition model of coal mine gas and coal dust explosion. An analysis of the feature extraction, optimal feature extraction, model training, and time consumption for model recognition during the model establishment process shows that the proposed algorithm has high computational efficiency and meets the requirement of the real-time coal mine safety monitoring and alarm system. From the results of recognition experiments, the sound recognition algorithm can distinguish each kind of sound involved in the experiments more accurately. The average recognition rate, recall rate, and accuracy rate of the model can reach 95%, 95%, and 95.8%, respectively, which is obviously better than the comparison algorithm and can meet the requirements of coal mine gas and coal dust explosion sensing and alarming.

Funder

National High Technology Research and Development Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference25 articles.

1. Analysis of Emergency Management Importance Based on Mine Gas Explosion Accidents;Zhou;Coal Sci. Technol.,2014

2. Research Advances About Multi-Field Evolution of Coupled Thermodynamic Disasters in Coal Mine Goaf;Lin;J. China Coal Soc.,2021

3. Research on Method of Coal Mine Gas and Coal Dust Explosion Perception Alarm and Explosion Source Judgment;Sun;Ind. Mine Autom.,2020

4. Research on Alarm Method of Coal Mine Extraordinary Accidents Based on Sound Recognition;Sun;Ind. Mine Autom.,2021

5. Sound Recognition Method of Coal Mine Gas and Coal Dust Explosion Based on Ceemd Component Sample Entropy and Svm Classification;Sun;J. Min. Saf. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3