Affiliation:
1. AMADE-UdG Research Group, University of Girona, 17003 Girona, Spain
2. Applus+ Laboratories, 08193 Bellaterra, Spain
Abstract
Manufacturing components using thermoplastic composite materials necessitates a judicious balance among fabrication parameters, cost considerations and the ultimate quality of the elements produced. Continuous manufacturing technologies, exemplified by methods such as continuous compressing molding and glide forming, seek to revolutionize production through their continuous processing approach. This study aimed to investigate the effects different process parameters have on the final quality of the manufactured parts when a continuous manufacturing technology, such as glide forming, is applied to thermoplastic composite materials. An experimental rig was designed, and 19 samples were prepared using a unidirectional-carbon-fiber-reinforced LM-PAEK (low-melting polyaryletherketone) composite. The process parameters studied were temperature, pressure and forming speed. The quality of the final parts was evaluated based on their thickness and consolidation levels. The findings underscore the feasibility of leveraging continuous manufacturing technologies for producing components using thermoplastic composite materials, but the process parameters must be carefully controlled to ensure the quality of the final part. The models obtained could be used as a post-processing tool to predict thickness and consolidation levels when simulating the manufacture of a component on macroscale levels. Further research is needed to optimize the process parameters and study their effects on other thermoplastic composite materials.
Funder
the Industrial Doctorate Program of the Generalitat de Catalunya
the AMADE Research Center and Applus+ Laboratories
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献