Surface Conditions after LASER Shock Peening of Steel and Aluminum Alloys Using Ultrafast Laser Pulses

Author:

Schubnell Jan1,Carl Eva-Regine1,Sarmast Ardeshir1,Hinterstein Manuel1,Preußner Johannes1,Seifert Marco2,Kaufmann Christoph2,Rußbüldt Peter3,Schulte Jan3

Affiliation:

1. Fraunhofer Institute for Mechancis of Materials IWM, Woehlerstr. 11, 79109 Freiburg, Germany

2. Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 18, 01277 Dresden, Germany

3. Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany

Abstract

Laser shock peening (LSP) is a mechanical surface treatment process to modify near-surface material properties. Compared to conventional shot peening (SP) the process parameters can be finely adjusted with greater precision and a higher penetration depth of compressive residual stresses could be reached. However, high process times of LSP leads to high production costs. In this study, ultrafast LSP (U-LSP) with an ultrafast laser source (pulse time in the picosecond range) was applied on specimens made of X5CrNiCu15-5 and AlZnMgCu1.5. The surface characteristics (surface roughness) and surface-near properties (microstructure, residual stresses, and phase composition) were compared to the as-delivered condition, to conventional laser shock peening (C-LSP), and to SP, whereas metallographic analyses and X-ray and synchrotron radiation techniques were used. The process time was significantly lower via U-LSP compared to C-LSP. For X5CrNiCu15-5, no significant compressive residual stresses were induced via U-LSP. However, for AlZnMgCu1.5, similar compressive residual stresses were reached via C-LSP and U-LSP; however, with a lower penetration depth. A change in the phase portions in the surface layer of X5CrNiCu15-5 after C-LSP compared to SP were determined.

Funder

Research Cluster of Advanced Photon Source

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3