Preparation of Bioactive Polyamide Fibres Modified with Acetanilide and Copper Sulphate

Author:

Biniaś Dorota1ORCID,Biniaś Włodzimierz2,Ślusarczyk Czesław2ORCID,Machnicka Alicja1

Affiliation:

1. Department of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland

2. Department of Materials Science, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biala, Poland

Abstract

This paper presents a simple method of obtaining polyamide 6 fibres modified with acetanilide and copper ions. During the spinning of the fibres with the additives applied, a partial reduction of CuSO4 to Cu2+ and Cu+ ions occurs, which is observed as a change in the blue colour of the prepared polyamide granulate to the grey–brown colour of the formed fibres. CuMPs obtained as a result of the salt reduction should give the obtained fibres bioactive properties. Three types of microorganisms were selected to assess the microbiological activity of the obtained fibres, i.e., Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa and Escherichia coli. The fibres have antibacterial activity against Gram-positive and Gram-negative bacteria. The largest inhibition zones were obtained for the Gram-positive bacteria Staphylococcus aureus, ranging from 1.5 to 4.5 mm, depending on the concentration of CuMPs. The morphology of the fibres’ surfaces was examined by means of scanning electron microscopy (SEM) and optical microscopy (OM). The changes in the polymer structure chemistry are studied by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray structure studies (WAXS and SAXS) and an energy-dispersive spectroscopy (EDS) analysis. The newly obtained bioactive polyamide fibres can be used in many areas, including medicine, clothing and environmental protection for the production of filters.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3