Reliability Prediction of Near-Isothermal Rolling of TiAl Alloy Based on Five Neural Network Models

Author:

Lian Wei1,Du Fengshan1

Affiliation:

1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China

Abstract

The near-isothermal rolling process has the characteristics of multi-variable and strong coupling, and the industrial conditions change constantly during the actual rolling process. It is difficult to consider the influence of various factors in industrial sites using theoretical derivation, and the compensation coefficient is difficult to accurately determine. The neural network model compensates for the difficulty in determining the compensation coefficient of the theoretical model. The neural network can be trained in advance through historical data, the trained network can be applied to industrial sites for prediction, and previous training errors can be compensated for through online learning using real-time data collected on site. But it requires a large amount of effective historical data, so this research uses a combination of production data from a controllable two-roll rolling mill and finite element simulation to provide training data support for the neural network. Five trained neural networks are used for prediction, and the results are compared with industrial site data, verifying the reliability and accuracy of genetic algorithm optimized neural network prediction. We successfully solved the problem of low control accuracy of TiAl alloy outlet thickness during near-isothermal rolling process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3