The Microstructure, Solidification Path, and Microhardness of As-Cast Ni-Al-Cr-Os Alloys in a Ni-Rich Region

Author:

Lin Yan1ORCID,Wei Ming1,Yang Guangyu1,Liu Haiyan1,Ye Hui1,Deng Chunming2ORCID,Zhang Lijun3ORCID

Affiliation:

1. State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-Ferrous Metal Research, Xi’an 710016, China

2. Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510651, China

3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Abstract

In this study, nine as-cast Ni-Al-Cr-Os alloys were prepared, and their constituent phases and microstructure were examined using X-ray diffraction and electron probe microanalysis techniques. The solidification paths of all the alloys in a Ni-rich corner were revealed based on a detailed analysis of the as-cast microstructure. The liquidus cube of the quaternary Ni-Al-Cr-Os system in a Ni-rich corner was established accordingly. A eutectic-type invariant reaction on the liquidus surface was explicitly identified, and its reaction can be expressed as L → α + β + γ. No quaternary invariant reaction was found in the alloys following the addition of Os. The Ni-Al-Cr-Os alloy points were then vertically mapped onto the Ni-Al-Cr liquid phase projection to better observe the effect of Os addition on the solidification path of the Ni-Al-Cr system. It was found that the addition of a small amount of Os has no significant effect on the solidification path of the Ni-Al-Cr system. Furthermore, the microhardness of each alloy, which was determined to be in the range of 207 HV to 565 HV, was found to be closely related to the phase constitution and phase fraction of the alloy.

Funder

National Natural Science Foundation for Youth of China

Key Research and Development Project of Shaanxi Province

Applied Basic Research Projects of Northwest Institute for Nonferrous Metal Research

Qinchuangyuan high-level innovative and entrepreneurial personnel introduction project of Shaanxi province

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3