Author:
Aguas Yelitza,Hincapié Margarita,Sánchez Camilo,Botero Liliana,Fernández-Ibañez Pilar
Abstract
The antibacterial photocatalytic activity of TiO2 supported over two types of substrates, borosilicate glass tubes (TiO2/SiO2-borosilicate glass tubes (BGT)) and low-density polyethylene pellets (TiO2-LDPE pellets), which were placed in a compound parabolic collectors (CPC) reactor, was evaluated against Enterobacter cloacae and Escherichia coli under sunlight. Three solar photocatalytic systems were assessed, suspended TiO2, TiO2/SiO2-BGT and TiO2-LDPE pellets, at three initial bacterial concentrations, 1 × 105; 1 × 103; 1 × 101 CFU/mL of E. coli and total bacteria (E. cloacae and E. coli). The solar photo-inactivation of E. coli was achieved after two hours with 7.2 kJ/L of UV-A, while total bacteria required four hours and 16.5 kJ/L of UV-A. Inactivation order of E. coli was determined, as follows, suspended TiO2/sunlight (50 mg/L) > TiO2-LDPE pellets/sunlight (52 mg/L) > TiO2/SiO2-BGT/sunlight (59 mg/L), the best E. coli. inactivation rate was obtained with TiO2-LDPE pellets/sunlight, within 4.5 kJ/L and 90 min. The highest total bacteria inactivation rate was found for TiO2/sunlight (50 mg/L) and TiO2-LDPE pellets/sunlight (52 mg/L), within 11.2 kJ/L and 180 min. TiO2 deposited over LDPE pellets was the most effective material, which can be successfully used for water disinfection applications. Bacterial regrowth was assessed 24 h after all photocatalytic treatments, none of those microorganisms showed any recovery above the detection limit (2 CFU/mL).
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献