Valorization of Shale Gas Condensate to Liquid Hydrocarbons through Catalytic Dehydrogenation and Oligomerization

Author:

Ridha Taufik,Li Yiru,Gençer EmreORCID,Siirola Jeffrey,Miller Jeffrey,Ribeiro Fabio,Agrawal Rakesh

Abstract

The recent shale gas boom has transformed the energy landscape of the United States. Compared to natural gas, shale resources contain a substantial amount of condensate and natural gas liquids (NGLs). Many shale basin regions located in remote areas are lacking the infrastructure to distribute the extracted NGLs to other regions—particularly the Gulf Coast, a major gas processing region. Here we present a shale gas transformation process that converts NGLs in shale resources into liquid hydrocarbons, which are easier to transport from these remote basins than NGL or its constituents. This process involves catalytic dehydrogenation followed by catalytic oligomerization. Thermodynamic process analysis shows that this process has the potential to be more energy efficient than existing NGL-to-liquid fuel (NTL) technologies. In addition, our estimated payback period for this process is within the average lifetime of shale gas wells. The proposed process holds the promise to be an energy efficient and economically attractive step to valorize condensate in remote shale basins.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference50 articles.

1. Process Design and Integration of Shale Gas to Methanol

2. Shale Gas Processing Integrated with Ethylene Production: Novel Process Designs, Exergy Analysis, and Techno-Economic Analysis

3. Compositional variety complicates processing plans for US shale gas;Ka;Oil Gas J.,2009

4. Natural Gas Pipeline Network—Transporting Natural Gas in the United States,2008

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3