Optimising Lead–Air Battery Performance through Innovative Open-Cell Foam Anodes

Author:

Hassein-Bey Amel Hind1ORCID,Belhadj Abd-Elmouneïm1,Toumi Selma2,Tahraoui Hichem134ORCID,Kebir Mohammed5ORCID,Amrane Abdeltif4ORCID,Chebli Derradji3,Bouguettoucha Abdallah3,Zamouche Meriem6ORCID,Zhang Jie7ORCID

Affiliation:

1. Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Medea 26000, Algeria

2. Faculty of Sciences, University of Medea, Nouveau Pôle Urbain, Medea 26000, Algeria

3. Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria

4. École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Université Rennes, F-35000 Rennes, France

5. Research Unit on Analysis and Technological Development in Environment (URADTE-CRAPC), Tipaza BP 384, Algeria

6. Laboratoire de Recherche sur le Médicament et le Développement Durable (ReMeDD), Department of Environmental Engineering, University of Salah Boubnider Constantine 3, El Khroub 25012, Algeria

7. School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

In the dynamic realm of sustainable energy storage technologies, the global research landscape presents myriad scientific and economic challenges. The erratic growth of renewable energies alongside the phasing out of conventional power plants poses a significant hurdle in maintaining a stable balance between energy supply and demand. Consequently, energy storage solutions play a pivotal role in mitigating substantial fluctuations in demand. Metal–air batteries, distinguished by their superior energy density and enhanced safety profile compared to other storage devices, emerge as promising solutions. Leveraging the well-established lead–acid battery technology, this study introduces a novel approach utilising open-cell foam manufactured through the Excess Salt Replication process as an anode for lead–air battery cells. This innovation not only conserves lead but also reduces battery weight. By employing a 25% antimonial lead alloy, open-cell foams with diameters ranging from 2 mm to 5 mm were fabricated for the antimonial lead–air battery. Preliminary findings suggest that the effective electrical conductivity of primary battery cells, measured experimentally, surpasses that of cells composed of the same dense, non-porous antimonial lead alloy. This improvement is primarily attributed to their extensive specific surface area, facilitating oxidation–reduction reactions. A correlation between effective electrical conductivity and cell diameter is established, indicating optimal conductivity achieved with a 5 mm cell diameter. These results underscore the feasibility of implementing such an electrical system.

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3