Introduction of Hybrid Additive Manufacturing for Producing Multi-Material Artificial Organs for Education and In Vitro Testing

Author:

Chatzipapas Konstantinos1ORCID,Nika Anastasia2ORCID,Krimpenis Agathoklis A.3ORCID

Affiliation:

1. Core Department, National and Kapodistrian University of Athens, 34400 Psachna, Greece

2. Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece

3. Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece

Abstract

The evolution of 3D printing has ushered in accessibility and cost-effectiveness, spanning various industries including biomedical engineering, education, and microfluidics. In biomedical engineering, it encompasses bioprinting tissues, producing prosthetics, porous metal orthopedic implants, and facilitating educational models. Hybrid Additive Manufacturing approaches and, more specifically, the integration of Fused Deposition Modeling (FDM) with bio-inkjet printing offers the advantages of improved accuracy, structural support, and controlled geometry, yet challenges persist in cell survival, interaction, and nutrient delivery within printed structures. The goal of this study was to develop and present a low-cost way to produce physical phantoms of human organs that could be used for research and training, bridging the gap between the use of highly detailed computational phantoms and real-life clinical applications. To this purpose, this study utilized anonymized clinical Computed Tomography (CT) data to create a liver physical model using the Creality Ender-3 printer. Polylactic Acid (PLA), Polyvinyl Alcohol (PVA), and light-bodied silicone (Polysiloxane) materials were employed for printing the liver including its veins and arteries. In brief, PLA was used to create a mold of a liver to be filled with biocompatible light-bodied silicone. Molds of the veins and arteries were printed using PVA and then inserted in the liver model to create empty channel. In addition, the PVA was then washed out by the final product using warm water. Despite minor imperfections due to the printer’s limitations, the final product imitates the computational model accurately enough. Precision adjustments in the design phase compensated for this variation. The proposed novel low-cost 3D printing methodology successfully produced an anatomically accurate liver physical model, presenting promising applications in medical education, research, and surgical planning. Notably, its implications extend to medical training, personalized medicine, and organ transplantation. The technology’s potential includes injection training for medical professionals, personalized anthropomorphic phantoms for radiation therapy, and the future prospect of creating functional living organs for organ transplantation, albeit requiring significant interdisciplinary collaboration and financial investment. This technique, while showcasing immense potential in biomedical applications, requires further advancements and interdisciplinary cooperation for its optimal utilization in revolutionizing medical science and benefiting patient healthcare.

Publisher

MDPI AG

Reference57 articles.

1. Current advances and future perspectives of 3D printing natural-derived biopolymers;Liu;Carbohydr. Polym.,2019

2. 3D printing based on imaging data: Review of medical applications;Rengier;Int. J. Comput. Assist. Radiol. Surg.,2010

3. Three-dimensional printing and 3D slicer powerful tools in understanding and treating neurosurgical diseases;You;Front. Surg.,2022

4. Electrospun nanofibrous materials for tissue engineering and drug delivery;Cui;Sci. Technol. Adv. Mater.,2010

5. Invited review article: Where and how 3D printing is used in teaching and education;Ford;Addit. Manuf.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3