A Simplified Design Method for the Mechanical Stability of Slit-Shaped Additively Manufactured Reactor Modules

Author:

Metzger David F.1ORCID,Klahn Christoph2ORCID,Dittmeyer Roland1ORCID

Affiliation:

1. Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

2. Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), B. 30.70, Strasse am Forum 8, 76131 Karlsruhe, Germany

Abstract

Equipment integrity is an essential aspect of process engineering. Design guidelines facilitate the design and production of safe-to-operate and economic devices. Thin-walled, slit-shaped modules form a subgroup of process engineering devices made via additive manufacturing (AM). Being subject to internal pressure, they have lacked design guidelines until now. We derived a user-centered calculation model for such modules with regular internal structures. It was validated with Finite Element Analysis (FEA) and practical pressure tests for which the modules were manufactured additively. The performance of the calculation could be confirmed, and a design graph was derived. Slit-shaped modules with appropriate internal structures can withstand high pressure at a minimum wall thickness, and they are efficiently fabricated. These structures, being pins, fins, lattice, or heat transfer enhancing fluid-guiding elements (FGEs), occupied approximately 10% of the modules’ internal volume.

Funder

German Federal Ministry of Research and Education

Publisher

MDPI AG

Reference30 articles.

1. Jess, A., and Wasserscheid, P. (2013). Chemical Technology: An Integral Textbook, Wiley-VCH. CourseSmart.

2. de Klerk, A. (2011). Fischer-Tropsch Refining, Wiley-VCH. [1st ed.].

3. Deutsche Gesetzliche Unfallversicherung, e.V. (2023, November 11). GESTIS-Stoffdatenbank. Available online: https://gestis.dguv.de/.

4. Lab-Scale Demonstration of By-Product Utilization in an Integrated Power-to-Liquid Process Applying Co-Electrolysis;Herz;Energy Technol.,2023

5. CFD Modeling of a Multichannel Fischer–Tropsch Reactor Module with Microscale Cooling Channels: Effects of Mirrored Structure Cooling Layers;Woo;Korean J. Chem. Eng.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3