Optimized Floating Offshore Wind Turbine Substructure Design Trends for 10–30 MW Turbines in Low-, Medium-, and High-Severity Wave Environments

Author:

Dagher Joseph Habib1,Goupee Andrew J.1ORCID,Viselli Anthony M.1

Affiliation:

1. University of Maine Advanced Structures and Composites Center, Orono, ME 04469, USA

Abstract

Floating offshore wind is a promising renewable energy source, as 60% of the wind resources globally are found at depths requiring floating technologies, it minimizes construction at sea, and provides opportunities for industrialization given a lower site dependency. While floating offshore wind has numerous advantages, a current obstacle is its cost in comparison to more established energy sources. One cost-reduction approach for floating wind is increasing turbine capacities, which minimizes the amount of foundations, moorings, cables, and O&M equipment. This work presents trends in mass-optimized VolturnUS hull designs as turbine capacity increases for various wave environments. To do this, a novel rapid hull optimization framework is presented that employs frequency domain modeling, estimations of statistical extreme responses, industry constructability requirements, and genetic algorithm optimization to generate preliminary mass-optimal VolturnUS hull designs for a given turbine design and set of site conditions. Using this framework, mass-optimized VolturnUS hull designs were generated for 10–30 MW turbines for wave environments of varying severities. These design studies show that scaling up turbine capacities increases the mass efficiency of substructure designs, with decreasing returns, throughout the examined turbine capacity range. Additionally, increased wave environment severity is shown to increase the required mass of a given substructure design.

Funder

Department of Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3