Thermodynamic Consistency of the Cushman Method of Computing the Configurational Entropy of a Landscape Lattice

Author:

Cushman Samuel A.

Abstract

There has been a recent surge of interest in theory and methods for calculating the entropy of landscape patterns, but relatively little is known about the thermodynamic consistency of these approaches. I posit that for any of these methods to be fully thermodynamically consistent, they must meet three conditions. First, the computed entropies must lie along the theoretical distribution of entropies as a function of total edge length, which Cushman showed was a parabolic function following from the fact that there is a normal distribution of permuted edge lengths, the entropy is the logarithm of the number of microstates in a macrostate, and the logarithm of a normal distribution is a parabolic function. Second, the entropy must increase over time through the period of the random mixing simulation, following the expectation that entropy increases in a closed system. Third, at full mixing, the entropy will fluctuate randomly around the maximum theoretical value, associated with a perfectly random arrangement of the lattice. I evaluated these criteria in a test condition involving a binary, two-class landscape using the Cushman method of directly applying the Boltzmann relation (s = klogW) to permuted landscape configurations and measuring the distribution of total edge length. The results show that the Cushman method directly applying the classical Boltzmann relation is fully consistent with these criteria and therefore fully thermodynamically consistent. I suggest that this method, which is a direct application of the classical and iconic formulation of Boltzmann, has advantages given its direct interpretability, theoretical elegance, and thermodynamic consistency.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3