Abstract
Machine learning methods, such as Long Short-Term Memory (LSTM) neural networks can predict real-life time series data. Here, we present a new approach to predict time series data combining interpolation techniques, randomly parameterized LSTM neural networks and measures of signal complexity, which we will refer to as complexity measures throughout this research. First, we interpolate the time series data under study. Next, we predict the time series data using an ensemble of randomly parameterized LSTM neural networks. Finally, we filter the ensemble prediction based on the original data complexity to improve the predictability, i.e., we keep only predictions with a complexity close to that of the training data. We test the proposed approach on five different univariate time series data. We use linear and fractal interpolation to increase the amount of data. We tested five different complexity measures for the ensemble filters for time series data, i.e., the Hurst exponent, Shannon’s entropy, Fisher’s information, SVD entropy, and the spectrum of Lyapunov exponents. Our results show that the interpolated predictions consistently outperformed the non-interpolated ones. The best ensemble predictions always beat a baseline prediction based on a neural network with only a single hidden LSTM, gated recurrent unit (GRU) or simple recurrent neural network (RNN) layer. The complexity filters can reduce the error of a random ensemble prediction by a factor of 10. Further, because we use randomly parameterized neural networks, no hyperparameter tuning is required. We prove this method useful for real-time time series prediction because the optimization of hyperparameters, which is usually very costly and time-intensive, can be circumvented with the presented approach.
Funder
FFG
The state of Lower Austria
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献