Thermal Cycling of (RE)BCO-Based Superconducting Tapes Joined by Lead-Free Solders

Author:

Skarba MichalORCID,Pekarčíková MarcelaORCID,Frolek Lubomír,Cuninková Eva,Necpal MartinORCID

Abstract

We prepared overlap soldered joints of high-temperature superconducting tapes, using various materials and preparation conditions. In order to select the joints with optimal performance, we correlated their electrical properties (derived from current–voltage curves) with the microstructure of the respective joint cross-section by scanning electron microscopy. With the first group of joints, we focused on the effect of used materials on joint resistivity and critical current, and we found that the dominant role was played by the quality of the internal interfaces of the superconducting tape. Initial joint resistivities ranged in the first group from 41 to 341 nΩ·cm2. The second group of joints underwent a series of thermal cyclings, upon which the initial resistivity range of 35–49 nΩ·cm2 broadened to 25–128 nΩ·cm2. After the total of 135 thermal cycles, three out of four joints showed no signs of significant degradation. Within the limit of 100 thermal cycles, reliable soldered joints can be thus prepared, with normalized resistivity not exceeding 1.4 and with normalized critical current above the value of 0.85.

Funder

European Regional Development Fund, Research and Innovation Operational Programme

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3