Author:
Zeng Ying,Wu Qunjian,Yang Kai,Tong Li,Yan Bin,Shu Jun,Yao Dezhong
Abstract
Electroencephalogram (EEG) signals, which originate from neurons in the brain, have drawn considerable interests in identity authentication. In this paper, a face image-based rapid serial visual presentation (RSVP) paradigm for identity authentication is proposed. This paradigm combines two kinds of biometric trait, face and EEG, together to evoke more specific and stable traits for authentication. The event-related potential (ERP) components induced by self-face and non-self-face (including familiar and not familiar) are investigated, and significant differences are found among different situations. On the basis of this, an authentication method based on Hierarchical Discriminant Component Analysis (HDCA) and Genetic Algorithm (GA) is proposed to build subject-specific model with optimized fewer channels. The accuracy and stability over time are evaluated to demonstrate the effectiveness and robustness of our method. The averaged authentication accuracy of 94.26% within 6 s can be achieved by our proposed method. For a 30-day averaged time interval, our method can still reach the averaged accuracy of 88.88%. Experimental results show that our proposed framework for EEG-based identity authentication is effective, robust, and stable over time.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献