A Trade-Off Analysis between Sensor Quality and Data Intervals for Prognostics Performance

Author:

Park Hyung JunORCID,Kim Nam HoORCID,Choi Joo-HoORCID

Abstract

In safety-critical systems such as industrial plants or aircraft, failure occurs inevitably during operation, and it is important to prevent it in order to maintain high availability. To reduce this risk, a lot of efforts are directed from developing sensing technologies to failure prognosis algorithms to enable predictive maintenance. The success of effective and reliable predictive maintenance not only relies on robust prognosis algorithms but also on the selection of sensors or data acquisition strategy. However, there are not many in-depth studies on a trade-off between sensor quality and data storage in the view of prognosis performance. The information about (1) how often data should be measured and (2) how good sensor quality should be for reliable failure prediction can be highly impactful for practitioners. In this paper, the authors evaluate the efficacy of the two factors in terms of remaining useful life (RUL) prediction accuracy and its uncertainty. In addition, since knowing true degradation information is almost impossible in practice, the authors validated the use of the prognosis metric without requiring the true degradation information. A numerical case study is conducted to identify the relationship between sensor quality and data storage. Then, real bearing run-to-failure (RTF) datasets acquired from accelerometer (contact type) and microphone (non-contact type) sensors are evaluated based on the prognosis performance metric and compared in terms of the sensors’ cost-effectiveness for predictive maintenance.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3