New Findings in the Field of Thermal Drilling of Aluminum Alloys

Author:

Sobotova Lydia,Badida Miroslav,Moravec Marek,Badidova Anna,Maslejova Alica

Abstract

This paper explores the joining of materials by a new progressive method of thermal drilling. Many types of joints are utilized in industrial production, especially in the automotive industry, which requires the joining of different types of materials with different thicknesses. For these needs, it will be appropriate to apply the joining method of thermal drilling technology. The used material, its mechanical properties, and the preparation of the joint by assembly and disassembly operations play an equally important role. By using new friction technologies, we can reduce production time, increase joint quality, offer automation in certain types of operations, save economic costs, and protect the environment. In this contribution, the authors present the results of their scientific research work focused on an investigation, comparison and testing of thermal drilling effects on the behavior of aluminum alloys (AlMgSi). The holes, collars and bushings formed by the drilling method were subjected to visual shape evaluation. Based on the evaluation of the samples, the quality of the evaluated joints was assessed. The best shape and strength properties at higher speeds of the drilling machine were obtained at 3400 rpm. The results of the methods of macroscopy and microscopy investigations, as well as the results of the methods of scanning electron microscope (SEM) and energy dispersive X-ray (EDS), are presented in this contribution.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Cataloque Material Thermdrill: The Thermdrill® Method Solves an Old Problemhttp://thermdrill.com/threaded-bushing-flowing-drill-instead-of-rivet-nut/

2. EFFECT OF FILLER METALS ON THE MECHANICAL PROPERTIES OF DISSIMILAR WELDING OF STAINLESS STEEL 316L AND CARBON STEEL A516 GR 70

3. Selection of joining methods in mechanical design

4. Research on press joining technology for automotive metallic sheets

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3