A Phase Retrieval Method for 3D Shape Measurement of High-Reflectivity Surface Based on π Phase-Shifting Fringes

Author:

Zhang Yanjun1,Sun Junhua1

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

Abstract

Fringe projection profilometry (FPP) has been widely used for 3D reconstruction, surface measurement, and reverse engineering. However, if the surface of an object has a high reflectivity, overexposure can easily occur. Image saturation caused by overexposure can lead to an incorrect intensity of the captured pattern images, resulting in phase and measurement errors of FPP. To address this issue, we propose a phase retrieval method for the 3D shape measurement of high-reflectivity surfaces based on π phase-shifting fringes. Our method only requires eight images to be projected, including three single-frequency three-step phase-shifting patterns and one pattern used to provide phase unwrapping constraints, called conventional patterns, as well as the π phase-shifting patterns corresponding to the four conventional patterns, called supplemental patterns. Saturated pixels of conventional fringes are replaced by unsaturated pixels in supplemental fringes to suppress phase retrieval errors. We analyzed all 16 replacement cases of fringe patterns and provided calculation methods for unwrapped phases. The main advantages of our method are as follows: (1) By combining the advantages of the stereo phase unwrapping (SPU) algorithm, the number of projected fringes is reduced. (2) By utilizing the phase unwrapping constraint provided by the fourth fringe pattern, the accuracy of SPU is improved. For highly reflective surfaces, the experimental results demonstrate the performance of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3