Dual-Task Interference Effects on Lower-Extremity Muscle Activities during Gait Initiation and Steady-State Gait among Healthy Young Individuals, Measured Using Wireless Electromyography Sensors

Author:

Waldon Ke’Vaughn Tarrel1,Stout Angeloh1,Manning Kaitlin1,Gray Leslie2ORCID,Wilson David George2ORCID,Kang Gu Eon13ORCID

Affiliation:

1. Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA

2. Department of Prosthetics-Orthotics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

3. Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Abstract

To maintain a healthy lifestyle, adults rely on their ability to walk while simultaneously managing multiple tasks that challenge their coordination. This study investigates the impact of cognitive dual tasks on lower-limb muscle activities in 21 healthy young adults during both gait initiation and steady-state gait. We utilized wireless electromyography sensors to measure muscle activities, along with a 3D motion capture system and force plates to detect the phases of gait initiation and steady-state gait. The participants were asked to walk at their self-selected pace, and we compared single-task and dual-task conditions. We analyzed mean muscle activation and coactivation in the biceps femoris, vastus lateralis, gastrocnemius, and tibialis anterior muscles. The findings revealed that, during gait initiation with the dual-task condition, there was a decrease in mean muscle activation and an increase in mean muscle coactivation between the swing and stance limbs compared with the single-task condition. In steady-state gait, there was also a decrease in mean muscle activation in the dual-task condition compared with the single-task condition. When participants performed dual-task activities during gait initiation, early indicators of reduced balance capability were observed. Additionally, during dual-task steady-state gait, the knee stabilizer muscles exhibited signs of altered activation, contributing to balance instability.

Funder

Shirley Ryan AbilityLab C-STAR Collaborative Mentorship Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3