Analysis of Onboard Verification Flight Test for the Salinity Satellite Scatterometer

Author:

Liu Yongqing12,Wang Te1,Yun Risheng1,Liu Peng1,Lin Wenming3,Zhu Di1,Liu Hao1ORCID,Zhang Xiangkun12

Affiliation:

1. Key Lab of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 211544, China

Abstract

The upcoming Salinity Satellite, scheduled for launch in 2024, will feature the world’s first phased array radar scatterometer. To validate its capability in measuring ocean surface backscatter coefficients, this paper conducts an in-depth analysis of the onboard verification flight test for the Salinity Satellite scatterometer. This paper provides a detailed introduction to the system design of the Salinity Satellite scatterometer, which utilizes phased array radar technology and digital beamforming techniques to achieve accurate measurements of sea surface scattering characteristics. The paper elaborates on the derivation of backscatter coefficients, system calibration, and phase amplitude correction for the phased array scatterometer. Furthermore, it describes the process of the onboard calibration flight test. By analyzing internal noise signals, onboard calibration signals, and external noise signals, the stability and reliability of the scatterometer system are validated. The experiment covers both land and ocean observations, with a particular focus on complex sea surface conditions in nearshore areas. Through the precise analysis of backscatter coefficients, the paper successfully distinguishes the different backscatter coefficient characteristics between ocean and land. The research results effectively demonstrate the feasibility of the Salinity Satellite scatterometer for measuring backscatter coefficients in a phased array configuration, as well as its outstanding performance in complex marine environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3