Atomicity and Regularity Principles Do Not Ensure Full Resistance of ECC Designs against Single-Trace Attacks

Author:

Kabin Ievgen,Dyka Zoya,Langendoerfer Peter

Abstract

Elliptic curve cryptography (ECC) is one of the commonly used standard methods for encrypting and signing messages which is especially applicable to resource-constrained devices such as sensor nodes that are networked in the Internet of Things. The same holds true for wearable sensors. In these fields of application, confidentiality and data integrity are of utmost importance as human lives depend on them. In this paper, we discuss the resistance of our fast dual-field ECDSA accelerator against side-channel analysis attacks. We present our implementation of a design supporting four different NIST elliptic curves to allow the reader to understand the discussion of the resistance aspects. For two different target platforms—ASIC and FPGA—we show that the application of atomic patterns, which is considered to ensure resistance against simple side-channel analysis attacks in the literature, is not sufficient to prevent either simple SCA or horizontal address-bit DPA attacks. We also evaluated an approach which is based on the activity of the field multiplier to increase the inherent resistance of the design against attacks performed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advantages of unsupervised learning analysis methods in single-trace SCA attacks;Microprocessors and Microsystems;2024-03

2. Randomized Addressing Countermeasures are Inefficient Against Address-Bit SCA;2023 IEEE International Conference on Cyber Security and Resilience (CSR);2023-07-31

3. Successful Simple Side Channel Analysis: Vulnerability of an atomic pattern $kP$ algorithm implemented with a constant time crypto library to simple electromagnetic analysis attacks;2023 12th Mediterranean Conference on Embedded Computing (MECO);2023-06-06

4. Laser Fault Injection Attacks against Radiation Tolerant TMR Registers;2022 IEEE 23rd Latin American Test Symposium (LATS);2022-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3