A Depth-Enhanced Holographic Super Multi-View Display Based on Depth Segmentation

Author:

Wang Zi1,Su Yumeng12,Pang Yujian12,Feng Qibin1,Lv Guoqiang2

Affiliation:

1. National Engineering Laboratory of Special Display Technology, National Key Laboratory of Advanced Display Technology, Academy of Photoelectric Technology, Hefei University of Technology, Hefei 230009, China

2. School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

A super multi-view (SMV) near-eye display (NED) effectively provides depth cues for three-dimensional (3D) display by projecting multiple viewpoint or parallax images onto the retina simultaneously. Previous SMV NED have suffered from a limited depth of field (DOF) due to a fixed image plane. In this paper, a holographic SMV Maxwellian display based on depth segmentation is proposed to enhance the DOF. The proposed approach involves capturing a set of parallax images and their corresponding depth maps. According to the depth maps, the parallax images are segmented into N sub-parallax images at different depth ranges. These sub-parallax images are then projected onto N image-recording planes (IRPs) of the corresponding depth for hologram computation. The wavefront at each IRP is calculated by multiplying the sub-parallax images with the corresponding spherical wave phases. Then, they are propagated to the hologram plane and added together to form a DOF-enhanced hologram. The simulation and experimental results are obtained to validate the effectiveness of the proposed method in extending the DOF of the holographic SMV displays, while accurately preserving occlusion.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Anhui Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lighting Projection Design of Art Stage From Holographic Naked Eye 3D Perspective;Journal of Cases on Information Technology;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3