Effects of Building Directions on Microstructure, Impurity Elements and Mechanical Properties of NiTi Alloys Fabricated by Laser Powder Bed Fusion

Author:

Wang Shuo1,Yang Xiao1,Chen Jieming1,Pan Hengpei1,Zhang Xiaolong2,Zhang Congyi1,Li Chunhui1,Liu Pan1,Zhang Xinyao13,Gao Lingqing13,Wang Zhenzhong1

Affiliation:

1. Luoyang Ship Material Research Institute, Luoyang 471023, China

2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

3. Henan Key Laboratory of Technology and Application Structural Materials for Ships and Marine Equipments, Luoyang 471023, China

Abstract

For NiTi alloys prepared by the Laser Powder Bed Fusion (LPBF), changes in the building directions will directly change the preferred orientation and thus directly affect the smart properties, such as superelasticity, as well as change the distribution state of defects and impurity elements to affect the phase transformation behaviour, which in turn affects the smart properties at different temperatures. In this study, the relationship between impurity elements, the building directions, and functional properties; the effects of building directions on the crystallographic anisotropy; phase composition; superelastic properties; microhardness; geometrically necessary dislocation (GND) density; and impurity element content of NiTi SMAs fabricated by LPBF were systematically studied. Three building directions measured from the substrate, namely, 0°, 45° and 90°, were selected, and three sets of cylindrical samples were fabricated with the same process parameters. Along the building direction, a strong <100>//vertical direction (VD) texture was formed for all the samples. Because of the difference in transformation temperature, when tested at 15 °C, the sample with the 45° orientation possessed the highest strain recovery of 3.2%. When tested at the austenite phase transformation finish temperature (Af)+10 °C, the 90° sample had the highest strain recovery of 5.83% and a strain recovery rate of 83.3%. The sample with the 90° orientation presented the highest microhardness, which was attributed to its high dislocation density. Meanwhile, different building directions had an effect on the contents of O, C, and N impurity elements, which affected the transformation temperature by changing the Ni/Ti ratio. This study innovatively studied the impurity element content and GND densities of compressive samples with three building directions, providing theoretical guidance for LPBFed NiTi SMA structural parts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3