Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm

Author:

Vu Chi Cuong1ORCID,Kim Jooyong2ORCID,Nguyen Thanh-Hai1ORCID

Affiliation:

1. Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam

2. Department of Materials Science and Engineering, Soongsil University, Seoul 156-743, Republic of Korea

Abstract

Sensor technologies have been core features for various wearable electronic products for decades. Their functions are expected to continue to play an essential role in future generations of wearable products. For example, trends in industrial, military, and security applications include smartwatches used for monitoring medical indicators, hearing devices with integrated sensor options, and electronic skins. However, many studies have focused on a specific area of the system, such as manufacturing processes, data analysis, or actual testing. This has led to challenges regarding the reliability, accuracy, or connectivity of components in the same wearable system. There is an urgent need for studies that consider the whole system to maximize the efficiency of soft sensors. This study proposes a method to fabricate a resistive pressure sensor with high sensitivity, resilience, and good strain tolerance for recognizing human motion or body signals. Herein, the sensor electrodes are shaped on a thin Pyralux film. A layer of microfiber polyesters, coated with carbon nanotubes, is used as the bearing and pressure sensing layer. Our sensor shows superior capabilities in respiratory monitoring. More specifically, the sensor can work in high-humidity environments, even when immersed in water—this is always a big challenge for conventional sensors. In addition, the embedded random forest model, built for the application to recognize restoration signals with high accuracy (up to 92%), helps to provide a better overview when placing flexible sensors in a practical system.

Funder

the Youth Promotion Science and Technology Center—Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City

Ho Chi Minh City University of Technology and Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3