An Ultra-Wide Band MIMO Antenna System with Enhanced Isolation for Microwave Imaging Applications

Author:

Kiani Saad Hassan1ORCID,Savci Huseyin Serif1ORCID,Munir Mehr E2ORCID,Sedik Ahmed23ORCID,Mostafa Hala4

Affiliation:

1. Electrical and Electronics Engineering Department, Faculty of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey

2. Smart Systems Engineering Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

3. Department of the Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kafr Elsheikh University, Kafr el-Sheikh 33516, Egypt

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

This paper introduces a novel two-port ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna system with enhanced isolation characteristics. The antenna, designed on a thin 0.787 mm RO5880 substrate, achieves a compact form factor of 52 × 26 mm2 and offers a wide bandwidth of 9.2 GHz (2.3 GHz to 11.5 GHz) while meeting the VSWR 2:1 criterion. Notably, the proposed antenna demonstrates an impressive increase in isolation, up to 16 dB, through the integration of a shared radiator with small rectangular slots, effectively reducing interference and improving overall performance. Furthermore, a comprehensive analysis of additional MIMO performance parameters, including the envelope correlation coefficient (ECC) and diversity gain, confirms their satisfactory limits, validating the potential of the proposed UWB-MIMO antenna for various UWB applications. The time domain analysis of the UWB antenna is also analyzed, and results are found to be within satisfactory limits. Simulation and measurement results further support the practicality and effectiveness of the antenna design, highlighting its compact size, wide bandwidth, and enhanced isolation characteristics, positioning it as a promising solution for advanced UWB microwave imaging systems.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3