Design of a Plantar Pressure Insole Measuring System Based on Modular Photoelectric Pressure Sensor Unit

Author:

Ren BinORCID,Liu JianweiORCID

Abstract

Accurately perceiving and predicting the parameters related to human walking is very important for man–machine coupled cooperative control systems such as exoskeletons and power prostheses. Plantar pressure data is rich in human gait and posture information and is an essential source of reference information as the input of the exoskeleton control system. Therefore, the proper design of the pressure sensing insole and validation is a big challenge considering the requirements such as convenience, reliability, no interference and so on. In this research, we developed a low-cost modular sensing unit based on the principle of photoelectric sensing and designed a plantar pressure sensing insole to achieve the purpose of sensing human walking gait and posture information. On the one hand, the sensor unit is made of economy-friendly commercial flexible circuits and elastic silicone, and the mechanical and electrical characteristics of the modular sensor unit are evaluated by a self-developed pressure-related calibration system. The calibration results show that the modular sensor based on the photoelectric sensing principle has fast response and negligible hysteresis. On the other hand, we analyzed the area where the plantar pressure is densely distributed. One benefit of the modular sensing unit design is that it is rather convenient to fabricate different insole solutions, so we fabricated and compared several pressure-sensitive insole solutions in this preliminary study. During the dynamic locomotion experiments of wearing the pressure-sensing insole, the time series signal of each sensor unit was collected and analyzed. The results show that the pressure sensing insole based on the photoelectric effect can sense the distribution of the plantar pressure by capturing the deformation of the insole caused by the foot contact during locomotion, and provide reliable gait information for wearable applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Young Eastern Scholars Program of Shanghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3